Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Mol Biosci ; 11: 1148948, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38516190

RESUMEN

Proteasome degradation is an integral part of cellular growth and function. Proteasomal intervention may mitigate adverse myocardial remodeling, but is associated with the onset of heart failure. Previously, we have demonstrated that increasing abundance of cardiac Lmp2 and its incorporation into proteasome complexes is an endogenous mechanism for proteasome regulation during hypertrophic remodeling of the heart induced by chronic ß-adrenoreceptor stimulation. Here, we investigated whether Lmp2 is required for myocardial remodeling not driven by inflammation and show that Lmp2 is a tipping element for growth and function in the heart but not for proteasome insufficiency. While it has no apparent impact under unchallenged conditions, myocardial remodeling without Lmp2 exacerbates hypertrophy and restricts cardiac function. Under chronic ß-adrenoreceptor stimulation, as seen in the development of cardiovascular disease and the manifestation of heart failure, genetic ablation of Lmp2 in mice caused augmented concentric hypertrophy of the left ventricle. While the heart rate was similarly elevated as in wildtype, myocardial contractility was not maintained without Lmp2, and apparently uncoupled of the ß-adrenergic response. Normalized to the exacerbated myocardial mass, contractility was reduced by 41% of the pretreatment level, but would appear preserved at absolute level. The lack of Lmp2 interfered with elevated 26S proteasome activities during early cardiac remodeling reported previously, but did not cause bulk proteasome insufficiency, suggesting the Lmp2 containing proteasome subpopulation is required for a selected group of proteins to be degraded. In the myocardial interstitium, augmented collagen deposition suggested matrix stiffening in the absence of Lmp2. Indeed, echocardiography of left ventricular peak relaxation velocity (circumferential strain rate) was reduced in this treatment group. Overall, targeting Lmp2 in a condition mimicking chronic ß-adrenoreceptor stimulation exhibited the onset of heart failure. Anticancer therapy inhibiting proteasome activity, including Lmp2, is associated with adverse cardiac events, in particular heart failure. Sparing Lmp2 may be an avenue to reduce adverse cardiac events when chronic sympathetic nervous system activation cannot be excluded.

2.
Sci Transl Med ; 16(736): eabq4581, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38416842

RESUMEN

Fibrosis is a hallmark of chronic disease. Although fibroblasts are involved, it is unclear to what extent endothelial cells also might contribute. We detected increased expression of the transcription factor Sox9 in endothelial cells in several different mouse fibrosis models. These models included systolic heart failure induced by pressure overload, diastolic heart failure induced by high-fat diet and nitric oxide synthase inhibition, pulmonary fibrosis induced by bleomycin treatment, and liver fibrosis due to a choline-deficient diet. We also observed up-regulation of endothelial SOX9 in cardiac tissue from patients with heart failure. To test whether SOX9 induction was sufficient to cause disease, we generated mice with endothelial cell-specific overexpression of Sox9, which promoted fibrosis in multiple organs and resulted in signs of heart failure. Endothelial Sox9 deletion prevented fibrosis and organ dysfunction in the two mouse models of heart failure as well as in the lung and liver fibrosis mouse models. Bulk and single-cell RNA sequencing of mouse endothelial cells across multiple vascular beds revealed that SOX9 induced extracellular matrix, growth factor, and inflammatory gene expression, leading to matrix deposition by endothelial cells. Moreover, mouse endothelial cells activated neighboring fibroblasts that then migrated and deposited matrix in response to SOX9, a process partly mediated by the secreted growth factor CCN2, a direct SOX9 target; endothelial cell-specific Sox9 deletion reversed these changes. These findings suggest a role for endothelial SOX9 as a fibrosis-promoting factor in different mouse organs during disease and imply that endothelial cells are an important regulator of fibrosis.


Asunto(s)
Insuficiencia Cardíaca , Factores de Transcripción , Animales , Humanos , Ratones , Modelos Animales de Enfermedad , Células Endoteliales , Fibrosis , Péptidos y Proteínas de Señalización Intercelular , Cirrosis Hepática/complicaciones , Factor de Transcripción SOX9/genética
3.
Cells ; 12(3)2023 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-36766785

RESUMEN

(1) Background: Diabetic cardiomyopathy is a major health problem worldwide. CTRP9, a secreted glycoprotein, is mainly expressed in cardiac endothelial cells and becomes downregulated in mouse models of diabetes mellitus; (2) Methods: In this study, we investigated the impact of CTRP9 on early stages of diabetic cardiomyopathy induced by 12 weeks of high-fat diet; (3) Results: While the lack of CTRP9 in knock-out mice aggravated insulin resistance and triggered diastolic left ventricular dysfunction, AAV9-mediated cardiac CTRP9 overexpression ameliorated cardiomyopathy under these conditions. At this early disease state upon high-fat diet, no fibrosis, no oxidative damage and no lipid deposition were identified in the myocardium of any of the experimental groups. Mechanistically, we found that CTRP9 is required for insulin-dependent signaling, cardiac glucose uptake in vivo and oxidative energy production in cardiomyocytes. Extensive RNA sequencing from myocardial tissue of CTRP9-overexpressing and knock-out as well as respective control mice revealed that CTRP9 acts as an anti-inflammatory mediator in the myocardium. Hence, CTRP9 knock-out exerted more, while CTRP9-overexpressing mice showed less leukocytes accumulation in the heart during high-fat diet; (4) Conclusions: In summary, endothelial-derived CTRP9 plays a prominent paracrine role to protect against diabetic cardiomyopathy and might constitute a therapeutic target.


Asunto(s)
Diabetes Mellitus , Cardiomiopatías Diabéticas , Resistencia a la Insulina , Ratones , Animales , Cardiomiopatías Diabéticas/metabolismo , Complemento C1q/metabolismo , Células Endoteliales/metabolismo , Adiponectina/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Miocitos Cardíacos/metabolismo , Inflamación/patología , Ratones Noqueados , Diabetes Mellitus/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo
4.
Hepatology ; 77(4): 1211-1227, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35776660

RESUMEN

BACKGROUND AND AIMS: In hereditary hemorrhagic telangiectasia (HHT), severe liver vascular malformations are associated with mutations in the Activin A Receptor-Like Type 1 ( ACVRL1 ) gene encoding ALK1, the receptor for bone morphogenetic protein (BMP) 9/BMP10, which regulates blood vessel development. Here, we established an HHT mouse model with exclusive liver involvement and adequate life expectancy to investigate ALK1 signaling in liver vessel formation and metabolic function. APPROACH AND RESULTS: Liver sinusoidal endothelial cell (LSEC)-selective Cre deleter line, Stab2-iCreF3 , was crossed with Acvrl1 -floxed mice to generate LSEC-specific Acvrl1 -deficient mice ( Alk1HEC-KO ). Alk1HEC-KO mice revealed hepatic vascular malformations and increased posthepatic flow, causing right ventricular volume overload. Transcriptomic analyses demonstrated induction of proangiogenic/tip cell gene sets and arterialization of hepatic vessels at the expense of LSEC and central venous identities. Loss of LSEC angiokines Wnt2 , Wnt9b , and R-spondin-3 ( Rspo3 ) led to disruption of metabolic liver zonation in Alk1HEC-KO mice and in liver specimens of patients with HHT. Furthermore, prion-like protein doppel ( Prnd ) and placental growth factor ( Pgf ) were upregulated in Alk1HEC-KO hepatic endothelial cells, representing candidates driving the organ-specific pathogenesis of HHT. In LSEC in vitro , stimulation or inhibition of ALK1 signaling counter-regulated Inhibitors of DNA binding (ID)1-3, known Alk1 transcriptional targets. Stimulation of ALK1 signaling and inhibition of ID1-3 function confirmed regulation of Wnt2 and Rspo3 by the BMP9/ALK1/ID axis. CONCLUSIONS: Hepatic endothelial ALK1 signaling protects from development of vascular malformations preserving organ-specific endothelial differentiation and angiocrine signaling. The long-term surviving Alk1HEC-KO HHT model offers opportunities to develop targeted therapies for this severe disease.


Asunto(s)
Telangiectasia Hemorrágica Hereditaria , Ratones , Femenino , Animales , Telangiectasia Hemorrágica Hereditaria/genética , Células Endoteliales/metabolismo , Factor de Crecimiento Placentario/metabolismo , Hígado/patología , Transducción de Señal , Factor 2 de Diferenciación de Crecimiento/metabolismo , Moléculas de Adhesión Celular Neuronal/metabolismo
5.
Nat Commun ; 13(1): 6663, 2022 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-36333314

RESUMEN

Tight control of cell fate choices is crucial for normal development. Here we show that lamin A/C plays a key role in chromatin organization in embryonic stem cells (ESCs), which safeguards naïve pluripotency and ensures proper cell fate choices during cardiogenesis. We report changes in chromatin compaction and localization of cardiac genes in Lmna-/- ESCs resulting in precocious activation of a transcriptional program promoting cardiomyocyte versus endothelial cell fate. This is accompanied by premature cardiomyocyte differentiation, cell cycle withdrawal and abnormal contractility. Gata4 is activated by lamin A/C loss and Gata4 silencing or haploinsufficiency rescues the aberrant cardiovascular cell fate choices induced by lamin A/C deficiency. We uncover divergent functions of lamin A/C in naïve pluripotent stem cells and cardiomyocytes, which have distinct contributions to the transcriptional alterations of patients with LMNA-associated cardiomyopathy. We conclude that disruption of lamin A/C-dependent chromatin architecture in ESCs is a primary event in LMNA loss-of-function cardiomyopathy.


Asunto(s)
Cromatina , Lamina Tipo A , Humanos , Lamina Tipo A/metabolismo , Cromatina/metabolismo , Diferenciación Celular/genética , Células Madre Embrionarias/metabolismo , Miocitos Cardíacos/metabolismo
6.
iScience ; 25(3): 103965, 2022 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-35281736

RESUMEN

To identify cellular mechanisms responsible for pressure overload triggered heart failure, we isolated cardiomyocytes, endothelial cells, and fibroblasts as most abundant cell types from mouse hearts in the subacute and chronic stages after transverse aortic constriction (TAC) and performed RNA-sequencing. We detected highly cell-type specific transcriptional responses with characteristic time courses and active intercellular communication. Cardiomyocytes after TAC exerted an early and sustained upregulation of inflammatory and matrix genes and a concomitant suppression of metabolic and ion channel genes. Fibroblasts, in contrast, showed transient early upregulation of inflammatory and matrix genes and downregulation of angiogenesis genes, but sustained induction of cell cycle and ion channel genes during TAC. Endothelial cells transiently induced cell cycle and extracellular matrix genes early after TAC, but exerted a long-lasting upregulation of inflammatory genes. As we found that matrix production by multiple cell types triggers pathological cellular responses, it might serve as a future therapeutic target.

7.
Cell Mol Life Sci ; 79(2): 93, 2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-35075545

RESUMEN

Arterial hypertension causes left ventricular hypertrophy leading to dilated cardiomyopathy. Following compensatory cardiomyocyte hypertrophy, cardiac dysfunction develops due to loss of cardiomyocytes preceded or paralleled by cardiac fibrosis. Zyxin acts as a mechanotransducer in vascular cells that may promote cardiomyocyte survival. Here, we analyzed cardiac function during experimental hypertension in zyxin knockout (KO) mice. In zyxin KO mice, made hypertensive by way of deoxycorticosterone acetate (DOCA)-salt treatment telemetry recording showed an attenuated rise in systolic blood pressure. Echocardiography indicated a systolic dysfunction, and isolated working heart measurements showed a decrease in systolic elastance. Hearts from hypertensive zyxin KO mice revealed increased apoptosis, fibrosis and an upregulation of active focal adhesion kinase as well as of integrins α5 and ß1. Both interstitial and perivascular fibrosis were even more pronounced in zyxin KO mice exposed to angiotensin II instead of DOCA-salt. Stretched microvascular endothelial cells may release collagen 1α2 and TGF-ß, which is characteristic for the transition to an intermediate mesenchymal phenotype, and thus spur the transformation of cardiac fibroblasts to myofibroblasts resulting in excessive scar tissue formation in the heart of hypertensive zyxin KO mice. While zyxin KO mice per se do not reveal a cardiac phenotype, this is unmasked upon induction of hypertension and owing to enhanced cardiomyocyte apoptosis and excessive fibrosis causes cardiac dysfunction. Zyxin may thus be important for the maintenance of cardiac function in spite of hypertension.


Asunto(s)
Angiotensina II/toxicidad , Cardiomegalia/prevención & control , Fibrosis/prevención & control , Hipertensión/complicaciones , Miocitos Cardíacos/citología , Zixina/fisiología , Animales , Apoptosis , Presión Sanguínea , Cardiomegalia/etiología , Cardiomegalia/patología , Fibrosis/etiología , Fibrosis/patología , Hipertensión/inducido químicamente , Hipertensión/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miocitos Cardíacos/metabolismo
8.
Nat Commun ; 13(1): 149, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35013221

RESUMEN

Cachexia is associated with poor prognosis in chronic heart failure patients, but the underlying mechanisms of cachexia triggered disease progression remain poorly understood. Here, we investigate whether the dysregulation of myokine expression from wasting skeletal muscle exaggerates heart failure. RNA sequencing from wasting skeletal muscles of mice with heart failure reveals a reduced expression of Ostn, which encodes the secreted myokine Musclin, previously implicated in the enhancement of natriuretic peptide signaling. By generating skeletal muscle specific Ostn knock-out and overexpressing mice, we demonstrate that reduced skeletal muscle Musclin levels exaggerate, while its overexpression in muscle attenuates cardiac dysfunction and myocardial fibrosis during pressure overload. Mechanistically, Musclin enhances the abundance of C-type natriuretic peptide (CNP), thereby promoting cardiomyocyte contractility through protein kinase A and inhibiting fibroblast activation through protein kinase G signaling. Because we also find reduced OSTN expression in skeletal muscle of heart failure patients, augmentation of Musclin might serve as therapeutic strategy.


Asunto(s)
Caquexia/genética , Fibrosis Endomiocárdica/genética , Insuficiencia Cardíaca/genética , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Atrofia Muscular/genética , Factores de Transcripción/genética , 2',3'-Nucleótido Cíclico 3'-Fosfodiesterasa/genética , 2',3'-Nucleótido Cíclico 3'-Fosfodiesterasa/metabolismo , Anciano , Anciano de 80 o más Años , Animales , Caquexia/metabolismo , Caquexia/fisiopatología , Caquexia/prevención & control , Estudios de Casos y Controles , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de GMP Cíclico/genética , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Modelos Animales de Enfermedad , Fibrosis Endomiocárdica/metabolismo , Fibrosis Endomiocárdica/fisiopatología , Fibrosis Endomiocárdica/prevención & control , Femenino , Regulación de la Expresión Génica , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/fisiopatología , Insuficiencia Cardíaca/prevención & control , Pruebas de Función Cardíaca , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Musculares/agonistas , Proteínas Musculares/antagonistas & inhibidores , Proteínas Musculares/deficiencia , Atrofia Muscular/metabolismo , Atrofia Muscular/fisiopatología , Atrofia Muscular/prevención & control , Miocardio/metabolismo , Miocardio/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Factores de Transcripción/agonistas , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/deficiencia
9.
Cells ; 10(12)2021 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-34943801

RESUMEN

Chronic hypoxia increases the resistance of pulmonary arteries by stimulating their contraction and augmenting their coverage by smooth muscle cells (SMCs). While these responses require adjustment of the vascular SMC transcriptome, regulatory elements are not well defined in this context. Here, we explored the functional role of the transcription factor nuclear factor of activated T-cells 5 (NFAT5/TonEBP) in the hypoxic lung. Regulatory functions of NFAT5 were investigated in cultured artery SMCs and lungs from control (Nfat5fl/fl) and SMC-specific Nfat5-deficient (Nfat5(SMC)-/-) mice. Exposure to hypoxia promoted the expression of genes associated with metabolism and mitochondrial oxidative phosphorylation (OXPHOS) in Nfat5(SMC)-/- versus Nfat5fl/fl lungs. In vitro, hypoxia-exposed Nfat5-deficient pulmonary artery SMCs elevated the level of OXPHOS-related transcripts, mitochondrial respiration, and production of reactive oxygen species (ROS). Right ventricular functions were impaired while pulmonary right ventricular systolic pressure (RVSP) was amplified in hypoxia-exposed Nfat5(SMC)-/- versus Nfat5fl/fl mice. Scavenging of mitochondrial ROS normalized the raise in RVSP. Our findings suggest a critical role for NFAT5 as a suppressor of OXPHOS-associated gene expression, mitochondrial respiration, and ROS production in pulmonary artery SMCs that is vital to limit ROS-dependent arterial resistance in a hypoxic environment.


Asunto(s)
Hipoxia/patología , Pulmón/patología , Mitocondrias/metabolismo , Miocitos del Músculo Liso/metabolismo , Arteria Pulmonar/patología , Especies Reactivas de Oxígeno/metabolismo , Factores de Transcripción/metabolismo , Resistencia Vascular , Animales , Presión Sanguínea , Electrocardiografía , Regulación de la Expresión Génica , Ventrículos Cardíacos/diagnóstico por imagen , Ventrículos Cardíacos/fisiopatología , Metaboloma , Ratones , Miocitos del Músculo Liso/patología , Fosforilación Oxidativa , Consumo de Oxígeno , Transporte de Proteínas , Sístole , Factores de Transcripción/deficiencia , Resistencia Vascular/genética
10.
Front Physiol ; 12: 722394, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34658910

RESUMEN

Endothelial wingless-related integration site (Wnt)-/ß-catenin signaling is a key regulator of the tightly sealed blood-brain barrier. In the hepatic vascular niche angiokine-mediated Wnt signaling was recently identified as an important regulator of hepatocyte function, including the determination of final adult liver size, liver regeneration, and metabolic liver zonation. Within the hepatic vasculature, the liver sinusoidal endothelial cells (LSECs) are morphologically unique and functionally specialized microvascular endothelial cells (ECs). Pathological changes of LSECs are involved in chronic liver diseases, hepatocarcinogenesis, and liver metastasis. To comprehensively analyze the effects of endothelial Wnt-/ß-catenin signaling in the liver, we used endothelial subtype-specific Clec4g-iCre mice to generate hepatic ECs with overexpression of Ctnnb1. In the resultant Clec4g-iCre tg/wt ;Ctnnb1(Ex3) fl/wt (Ctnnb1 OE-EC ) mice, activation of endothelial Wnt-/ß-catenin signaling resulted in sinusoidal transdifferentiation with disturbed endothelial zonation, that is, loss of midzonal LSEC marker lymphatic vessel endothelial hyaluronic acid receptor 1 (Lyve1) and enrichment of continuous EC genes, such as cluster of differentiation (CD)34 and Apln. Notably, gene set enrichment analysis revealed overrepresentation of brain endothelial transcripts. Activation of endothelial Wnt-/ß-catenin signaling did not induce liver fibrosis or alter metabolic liver zonation, but Ctnnb1 OE-EC mice exhibited significantly increased plasma triglyceride concentrations, while liver lipid content was slightly reduced. Ctnnb1 overexpression in arterial ECs of the heart has been reported previously to cause cardiomyopathy. As Clec4g-iCre is active in a subset of cardiac ECs, it was not unexpected that Ctnnb1 OE-EC mice showed reduced overall survival and cardiac dysfunction. Altogether, balanced endothelial Wnt-/ß-catenin signaling in the liver is required for normal LSEC differentiation and for maintenance of normal plasma triglyceride levels.

11.
EMBO Mol Med ; 11(10): e10018, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31468715

RESUMEN

Pathological cardiac overload induces myocardial protein synthesis and hypertrophy, which predisposes to heart failure. To inhibit hypertrophy therapeutically, the identification of negative regulators of cardiomyocyte protein synthesis is needed. Here, we identified the tumor suppressor protein TIP30 as novel inhibitor of cardiac hypertrophy and dysfunction. Reduced TIP30 levels in mice entailed exaggerated cardiac growth during experimental pressure overload, which was associated with cardiomyocyte cellular hypertrophy, increased myocardial protein synthesis, reduced capillary density, and left ventricular dysfunction. Pharmacological inhibition of protein synthesis improved these defects. Our results are relevant for human disease, since we found diminished cardiac TIP30 levels in samples from patients suffering from end-stage heart failure or hypertrophic cardiomyopathy. Importantly, therapeutic overexpression of TIP30 in mouse hearts inhibited cardiac hypertrophy and improved left ventricular function during pressure overload and in cardiomyopathic mdx mice. Mechanistically, we identified a previously unknown anti-hypertrophic mechanism, whereby TIP30 binds the eukaryotic elongation factor 1A (eEF1A) to prevent the interaction with its essential co-factor eEF1B2 and translational elongation. Therefore, TIP30 could be a therapeutic target to counteract cardiac hypertrophy.


Asunto(s)
Acetiltransferasas/metabolismo , Cardiomegalia/fisiopatología , Extensión de la Cadena Peptídica de Translación , Factores de Transcripción/metabolismo , Animales , Modelos Animales de Enfermedad , Factores de Intercambio de Guanina Nucleótido/metabolismo , Humanos , Ratones , Ratones Endogámicos mdx , Miocitos Cardíacos/metabolismo , Factor 1 de Elongación Peptídica/metabolismo , Unión Proteica , Mapas de Interacción de Proteínas , Proteínas Represoras/metabolismo , Proteínas Supresoras de Tumor/metabolismo
12.
JCI Insight ; 52019 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-31335322

RESUMEN

Cardiac pressure overload (for example due to aortic stenosis) induces irreversible myocardial dysfunction, cardiomyocyte hypertrophy and interstitial fibrosis in patients. In contrast to adult, neonatal mice can efficiently regenerate the heart after injury in the first week after birth. To decipher whether insufficient cardiac regeneration contributes to the progression of pressure overload dependent disease, we established a transverse aortic constriction protocol in neonatal mice (nTAC). nTAC in the non-regenerative stage (at postnatal day P7) induced cardiac dysfunction, myocardial fibrosis and cardiomyocyte hypertrophy. In contrast, nTAC in the regenerative stage (at P1) largely prevented these maladaptive responses and was in particular associated with enhanced myocardial angiogenesis and increased cardiomyocyte proliferation, which both supported adaptation during nTAC. A comparative transcriptomic analysis between hearts after regenerative versus non-regenerative nTAC suggested the transcription factor GATA4 as master regulator of the regenerative gene-program. Indeed, cardiomyocyte specific deletion of GATA4 converted the regenerative nTAC into a non-regenerative, maladaptive response. Our new nTAC model can be used to identify mediators of adaptation during pressure overload and to discover novel potential therapeutic strategies.


Asunto(s)
Inductores de la Angiogénesis/farmacología , Proliferación Celular/efectos de los fármacos , Insuficiencia Cardíaca/metabolismo , Miocitos Cardíacos/metabolismo , Animales , Citocinesis , Modelos Animales de Enfermedad , Femenino , Fibrosis , Factor de Transcripción GATA4/genética , Factor de Transcripción GATA4/metabolismo , Expresión Génica , Corazón , Insuficiencia Cardíaca/patología , Masculino , Ratones , Ratones Endogámicos ICR , Ratones Noqueados , Miocitos Cardíacos/patología , Presión , Ratas , Sirolimus/farmacología , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...